

Director

Frédéric PRECIOSO

Co-advisors

Arnaud REVEL
Diane LINGRAND

Reviewers

Jenny BENOIS-PINEAU

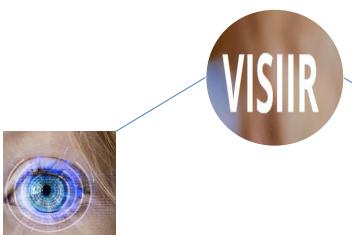
Nicolas THOME

Examinators

Ebroul IZQUIERDO
Bernard MERIALDO

Content Based Image Retrieval based on implicit gaze annotations

Stéphanie Lopez

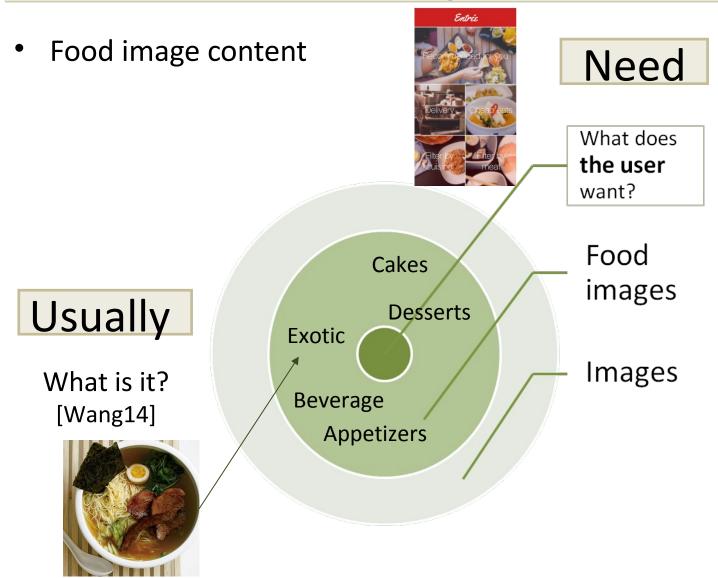


Content Based Image Retrieval

Context

Existing works

Conclusion



12/06/17

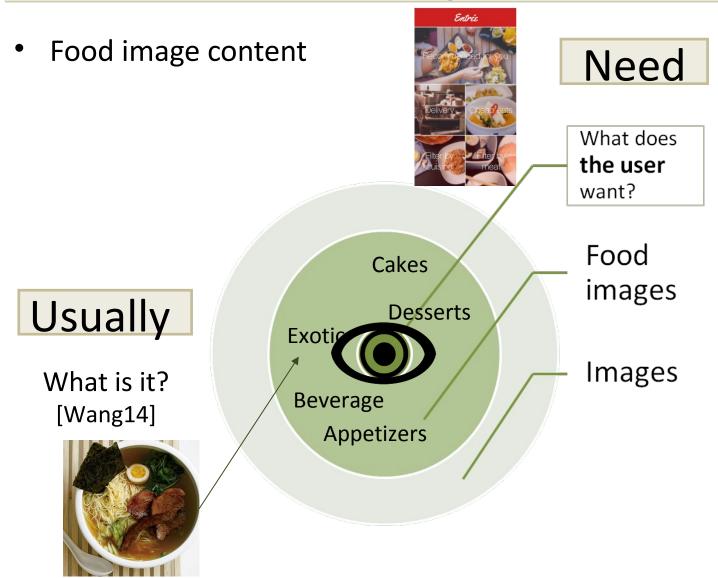
2

Content Based Image Retrieval

Context

Existing works

Conclusion



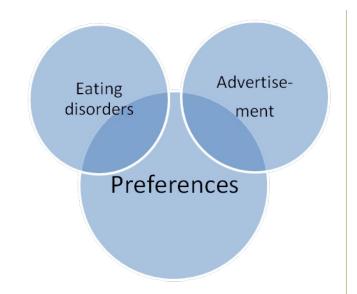
Visual Seek of Interactive Image Retrieval

Context

Existing works

Conclusion

Psychology (understand)



What does the user prefer? Why?

Computer Vision (model)

- Recognition
 - What is it?
- Retrieval
 - Which images correspond to?

How to alleviate the burden of annotation process?

Annotation

Context

Existing works

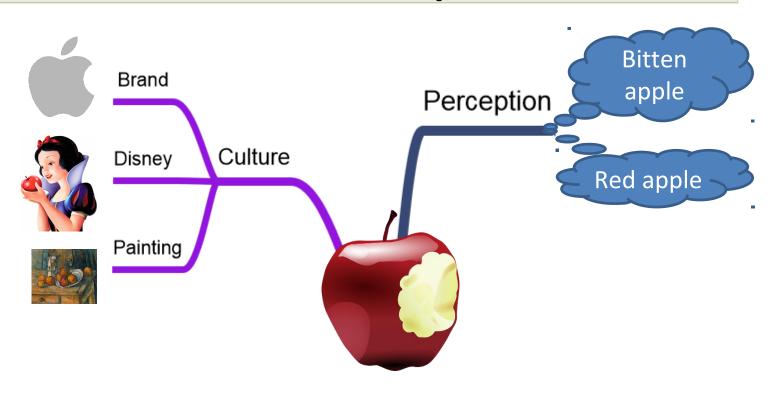
Conclusion

Human Perception

Context

Existing works

Conclusion

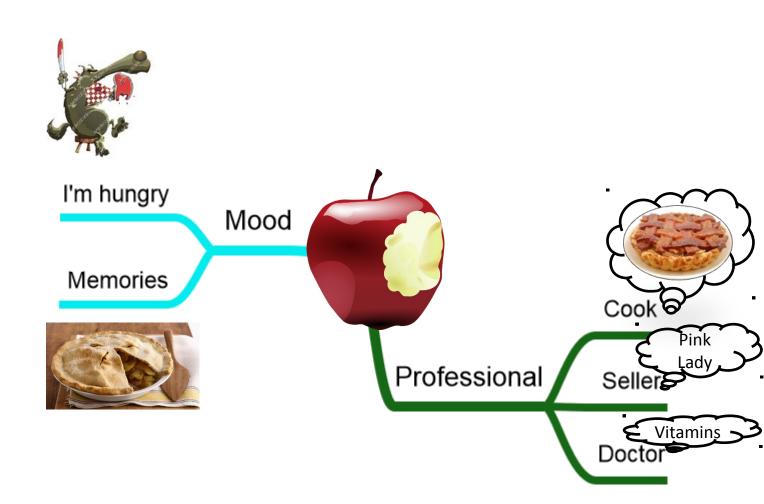


Memory / Details / Knowledge

Context

Existing works

Conclusion



Constraints

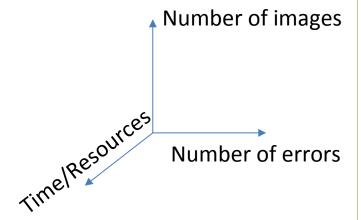
Context

Existing works

Conclusion

Annotation constraints

Annotations



- Implicit annotations
 - Gaze distractors
 - Control [Jacob91]

Impact on classification

Constraints

Context

Existing works

Conclusion

Annotation constraints

Annotations

Number of images

Number of errors

- Implicit annotations
 - Gaze distractors
 - Control [Jacob91]

Impact on classification

Few examples

Weakly supervised learning

 Representation of the images relatively to a target category

Goals

Context

Existing works

Conclusion

Category identification by gaze

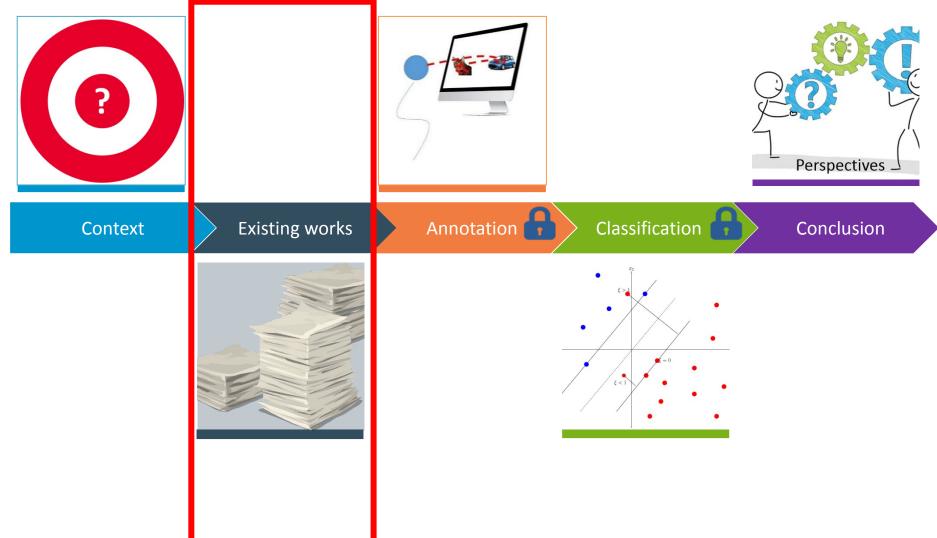
- Real time
- Gaze Based Intention Estimator (GBIE)
- Agnostic to users and categories

Towards user-centred concepts

- Concept independence
- General / Subjective applications

Classification purpose

- Train with few examples (GBIE efficiency)
- Weakly supervised learning methods
 Measure on label reliability



Context

Existing works

Conclusion

- Fundamentals about eye gazing
 - Gaze features
 - Gaze distractors
- Protocols in gaze studies
 - Psychological approaches
 - Computer vision

Eye tracking

Context

Existing works

Conclusion

Eye tracker Tobii 32Hz - 60 Hz

- 2 infrared cameras
- Time sample
- Raw gaze data
 - X,Y position
 - Validity value
 - Pupil diameter
 - Timestamp

Gaze fundamentals

Context

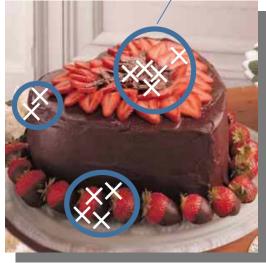
Existing works

Conclusion

Micro-saccades -> fixations
Saccades

30 pixels >120 ms

14



[Salvucci2000] [Kozma2009] [Auer2010]

30 Gaze Features

Context

Existing works

Conclusion

RAW FEATURES

- X,Y position
- First and last seen images
- Observation time
- Jumps between images

First seen image [Krajbich2010]

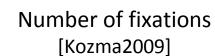
FIXATIONS

Number of fixations

- Per image
- First visit
- Last visit

Mean length

Position



OTHERS

- Pupil diameter
- Gaze spread
- Gaze speed

Maximum pupil size [Hess1960]

Gaze distractors / Biases

Context

Existing works

Conclusion

Tasks [Buswell35]

- Free viewing
- Emotion
- Memory
- Annotation

Feedbacks

- Mouse
- Keyboard
- Check boxes

Images [Henderson13]

- Number
- Colors
- Texts
- Shape
- Size
- Background

Users [de San Roman17]

- Boredom/ Tiredness
- Age
- Gender
- Culture
- Glasses
- Tastes
- Schedule
- Health [Castellanos09]

Protocols of gaze studies

Context

Existing works

Conclusion

Psychology

Preference

 Visual Preference Paradigm [Fantz58]

Computer Vision

Recognition

[Papadopoulos14]

Retrieval

[Hajimirza12]

Protocols of gaze studies

Context

Existing works

Conclusion

Psychology

Preference

 Visual Preference Paradigm [Fantz58]

Computer Vision

Recognition

[Papadopoulos14]

Retrieval

[Hajimirza12]

Feedbacks

What is it?

Is it a cat?

What corresponds?

Is it interesting?

Content Based Image Retrieval (CBIR)

Context

Existing works

Conclusion

Gaze Annotation

- Understand human perception [Castellanos09]
- Automatize human annotation [Papadopoulos14]

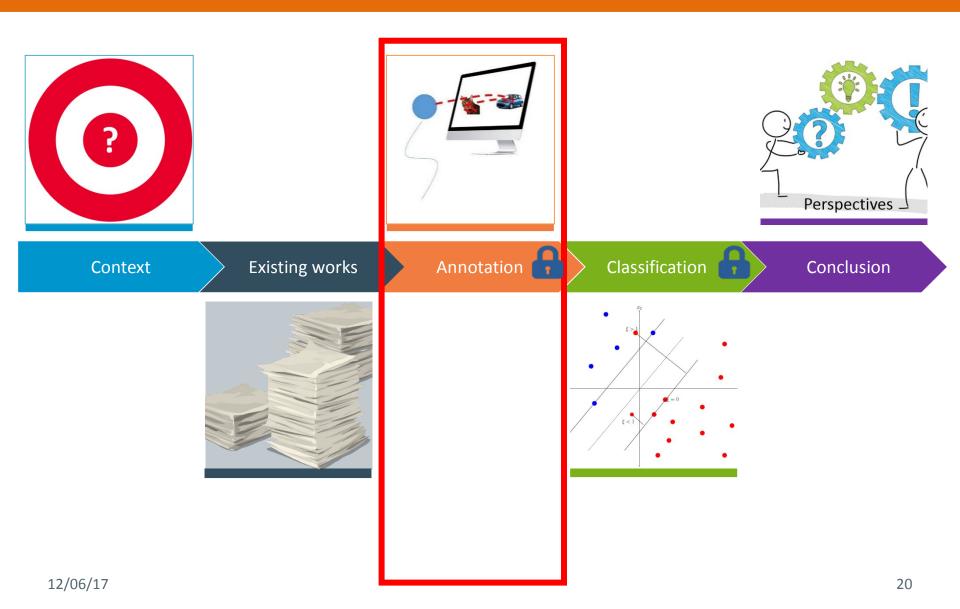
Classification

- Weakly supervised learning
- Representation of the images relatively to a target category

Combined strategy

Gazir

Gaze Based Intention Estimator



Choice of our protocol

Context

Existing works

Conclusion

Visual Preference Paradigm

- Intuitive: I prefer this to that
 - Endless possibilities of identification contexts
 - Category independence
- Limit specific gaze patterns
 - User-independence
- Real-time decision
 - Not too many criteria of comparison
- Display 2 images
 - Smaller device
 - handfree decision

Goals reminder: Gaze Annotation

Context

Existing works

Conclusion

Concept identification by gaze

- Gaze Based Intention Estimator (GBIE)
- Real time
- Agnostic to users and categories

VPP

Towards user-centred concepts

- Concept independence
- General / Subjective applications
- Standard categories
- Food Specific categories
- Food General categories

Classification purpose

- Train with few examples
- Weakly supervised learning methods

Measure of uncertainty

Context

Existing works

- protocol
- GBIE

Conclusion

Task

- Category identification
- Image choices
- Users' information
- Process

Category and User Independence

Context

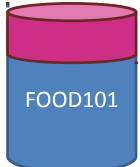
Existing works

- protocol
- GBIE

Conclusion

Limit the gaze habituation!

Standard categories	Food Specific categories	Food General categories
S1: Nice S2: La Rochelle	F1	F2
Animals Persons Vehicles	Beet salad Carpaccio Cannoli	Appetizers Desserts Citrus
Furniture	Ice cream	Berries



24

Image choice

Context

Existing works

- protocol
- GBIE

Conclusion

Carpaccio

- Color
- Shape
- Size
- Limit gaze distractors
- No text
- Image difficulty [Tudor16]
 - ✓ Number of elements
 - ✓ Number of classes
 - ✓ Confusability of the elements

Users' information

Context

Existing works

- protocol
- GBIE

Conclusion

Questionnaire

- Age
- Gender
- Schedule
- Glasses
- Tastes

	S1	S2	F1	F2
†	40	46	46	52
	1.7 sec	1.9 sec	2.0 sec	2.2 sec

[Duchowski02] 400 to 800ms to understand the content => predict in <1sec?

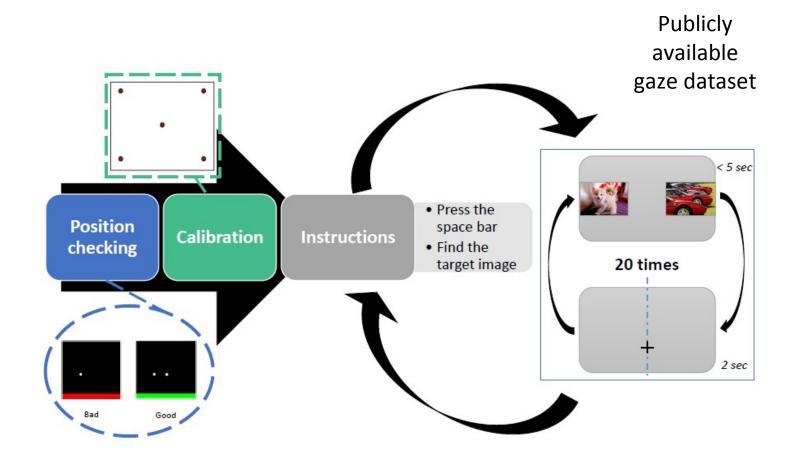
Process

Context

Existing works

- protocol
- GBIE

Conclusion



Context

Existing works

- protocol
- GBIE

Conclusion

- Most discriminant feature among 30 features
 - User independent
 - Category independent
- Real-time constraint
- Gaze Based Intention Estimator (GBIE)
- Comparison to existing works

Context

Existing works

- protocol
- GBIE

Conclusion

Most discriminant gaze feature

Hypothesis:

- The simpler, the more generalizable
 - User
 - Target category

Question:

Is one feature enough to infer the user's choice?

Challenges:

- No correlation with visualisation time
- Method that provides a measure of uncertainty
- <u>User independence</u> (for a given experiment)
 - Merged gaze data of participants

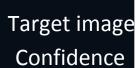
Most discriminant feature

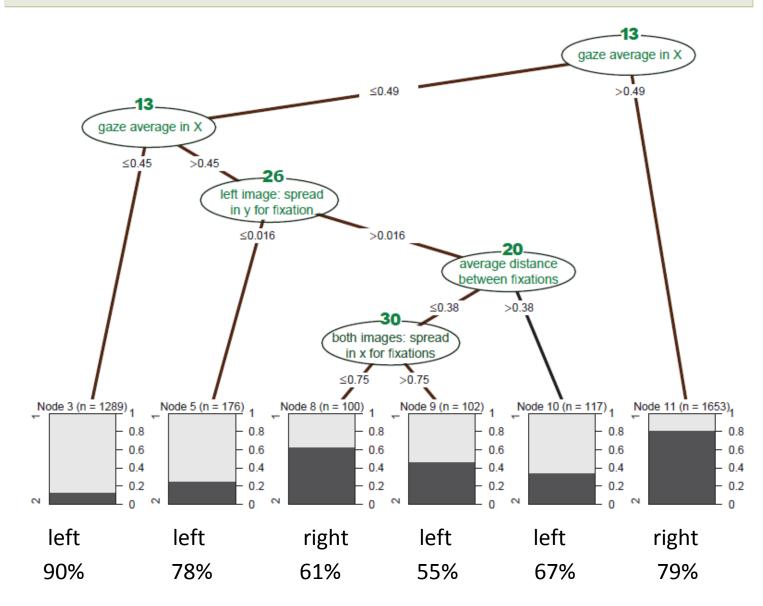
Context

Existing works

- protocol
- GBIE

Conclusion





Most discriminant feature

Context

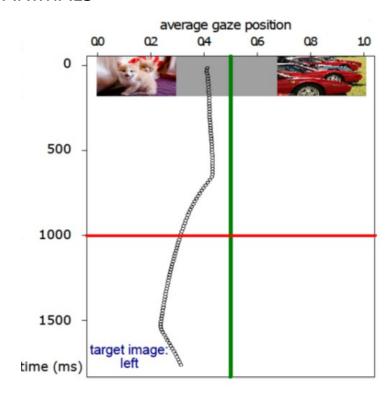
Existing works

- protocol
- GBIE

Conclusion

Average horizontal gaze position

ANIMALS



- Category independence
 - Same feature for all the experiments

Real-time constraint

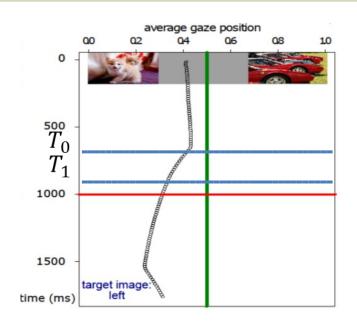
Context

Existing works

- protocol
- GBIE

Conclusion

Not until the end of the visualisation time



 Cumulative average of horizontal gaze position at

 $-T_0$

 $-T_1$

T0 (ms)	640		672		768	800	832
T1 (ms)	800	960	832	992	928	960	992

Real-time constraint

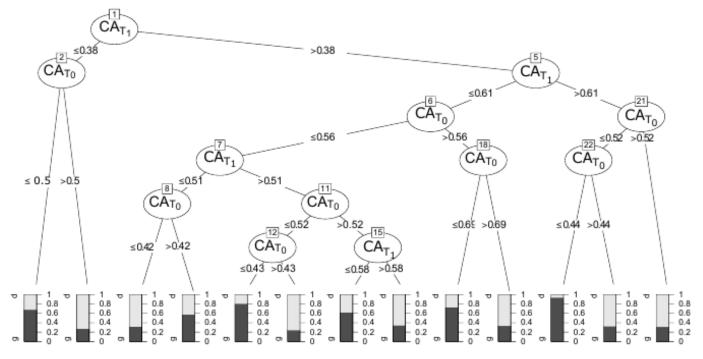
Context

Existing works

- protocol
- GBIE

Conclusion

One decision tree per experiment



4 possible GBIE

Context

Existing works

- protocol
- GBIE

Conclusion

Validity of the prediction

	T0=800ms, T1=960ms
S 1	67.8%
S2	63.6%
F1	81.1%
F2	54.4%

Mirror data

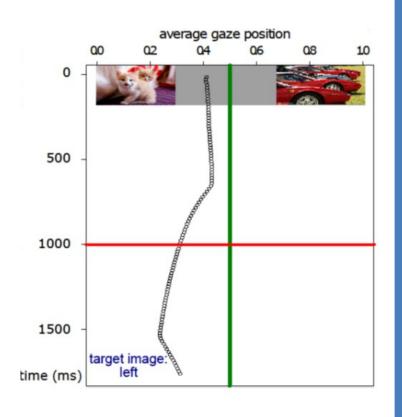
Context

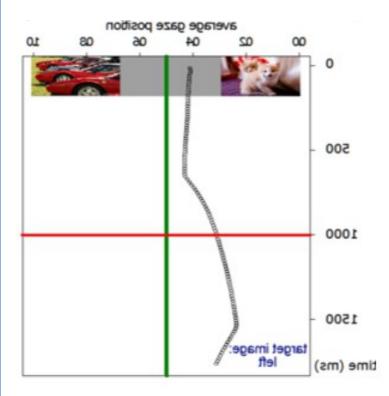
Existing works

- protocol
- GBIE

Conclusion

Symmetrical property





Selection and validation of the GBIE

Context

Existing works

- protocol
- GBIE

Conclusion

S1, S2, F1: experiments

Sym S1, Sym S2, Sym F1: mirror data

	S1		F1		
S1	(67.8%)	User independent	55.2%		
Sym S1	64.0%		54.8%	Not category independent	
S2	63.3%		53.3%		
Sym S2	60.5%		53.3%		
F1	71.5%	Category independent	(81.0%)	User	
Sym F1	64.4%		81.0%	independent??	

Selection and validation of the GBIE

Context

Existing works

- protocol
- GBIE

Conclusion

S1, S2, F1: experiments

Sym S1, Sym S2, Sym F1: mirror data

		S1	F1		
S1	(67.8%)		55.2%		
Sym S1	64.0%	User independent	54.8%	Not category	
S2	63.3%		53.3%	independent	
Sym S2	60.5%		53.3%	·	
F1	71.5%	Category	(81.0%)	User	
Sym F1	64.4%	independent	81.0%	independent??	

GBIE built on gaze data of S1 Average validity: ~70%

Comparison with existing works

Until the end of the visualisation time

[Kozma2009] [Hess1960] [Krajbich2010]

		GBIE	Max. number of fixations	Max. size of pupil	First seen image
S1	-		51.0%	67.7%	49.4%
S2	-		22.5%	65.3%	50.2%
F1	-		57.1%	60.2%	85.1%

Context

Existing works

- protocol
- **GBIE**

Conclusion

Comparison with existing works

Context

Existing works

- protocol
- GBIE

Conclusion

Until 960 ms

	GBIE	Max. number of fixations	Max. size of pupil	First seen image
S1	67.8%	37.2%	55.8%	48.9%
S2	63.3%	34.8%	58.4%	50.1%
F1	71.5%	59.8%	65.0%	83.6%

[Hess1960]

[Krajbich2010]

[Kozma2009]

Goals reminder

Context

Existing works

Conclusion

Concept identification by gaze

- ✓ Gaze Based Intention Estimator (GBIE)
- ✓ Real time
- ✓ Agnostic to users and categories

- ICIP2015
- publicly available gaze dataset

Towards user-centred approaches

- ✓ Concept independence
- ? General / Subjective applications

AVI2016

Classification purpose

- > Train with few examples
- Weakly supervised learning methods

Classify with a traning set annotated with our GBIE

Context

Existing works

- Methods
- Results

Conclusion

- Dataset (standard categories)
- Standard Classification
- Handling label uncertainty
- Strategies
 - Criteria of label discrimination
 - 2 contexts of classification

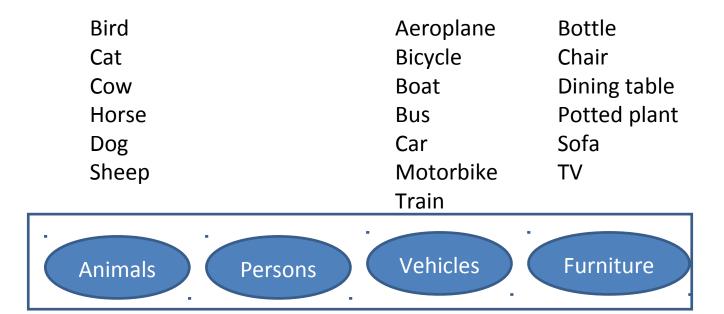
Data

Context

Existing works

- Methods
- Results
- Conclusion

- VOC2007 (20 subcategories -> 4 general categories)
 - Training: 5011 images



General categories

- Deep features provided by [Durand15]
- Test set: 4952 images

→ Is it possible to classify images according to general categories?

TC5011

Context

Existing works

- Methods
- Results

Conclusion

Data

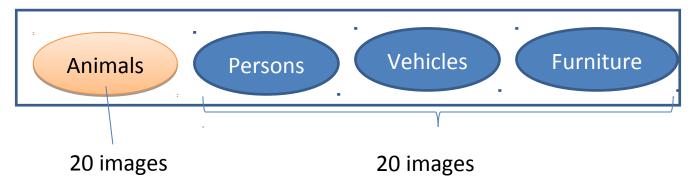
Context

Existing works

- Methods
- Results

Conclusion

- VOC2007 (20 subcategories -> 4 general categories)
 - Training: 5011 images
 - Test: 4952 images
- Our training set:
 - 40 images seen by 86 participants (S1 + S2
 - 20 targeted images
 - 20 untargeted images



Small training sets and Uncertain labels

Deep features provided by [Durand15]

• Test set: 4952 images

→ Is it possible to classify images according to general categories?

C-SVM

• TC5011

→If so, is it possible to classify images with a training set that is 100-time smaller and randomly selected examples?

C-SVM

TC40

→ If so, is it possible to classify images with uncertain labels?

C-SVM / handling label noise

GBIE40

1

Context

Existing

works

- Methods
- Results

Conclusion

12/06/17

46

Performance metrics

Context

Existing works

- Methods
- Results

Conclusion

Accuracy

- Classification (Computer Vision)
- The whole dataset

Precision @k

- Retrieval (User-centred)
- The first k most relevant images

Is C-SVM robust to label noise or should we use other methods?

Label Uncertainty Survey [Frenay14]

Context

Existing works

- Methods
- Results
- Conclusion

- Robust [Teng01]
 - Is C-SVM robust to label noise
 - powerSVM [Zhang2012]

Context

Existing works

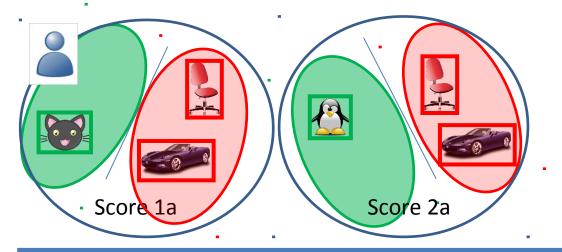
- Methods
- Results

Conclusion

Representativeness (powerSVM)

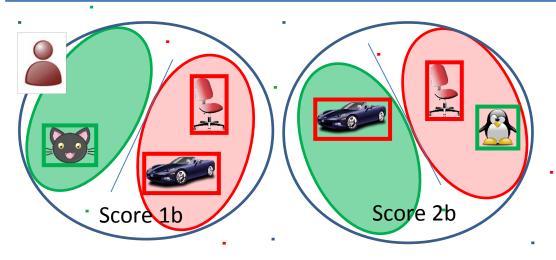
Representativeness score = classifier score of 1 + example vs all - examples

for EACH positive example => RANK



Expectations

Less/more reliable than



Expectations

Less reliable than

Label Uncertainty Survey [Frenay14]

Context

Existing works

- Methods
- Results

Conclusion

- Robust [Teng01]
 - Is C-SVM robust to label noise?
 - powerSVM
- Data cleansing [Garcia15]
 - Not possible with small training sets
- Label noise tolerant [Niaf14]
 - P(robabilistic)-SVM

P-SVM derived from C-SVM

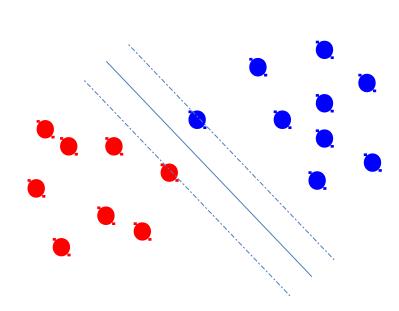
Find the hyperplane that maximizes the margin

Context

Existing works

- Methods
- Results

Conclusion



Handling uncertain labels with P-SVM

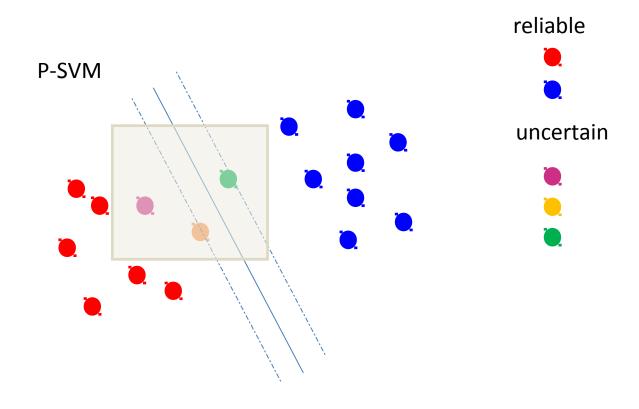
Hyperplane calculated with C-SVM and refine with C-SVR

Context

Existing works

- Methods
- Results

Conclusion



Handling uncertain labels with P-SVM

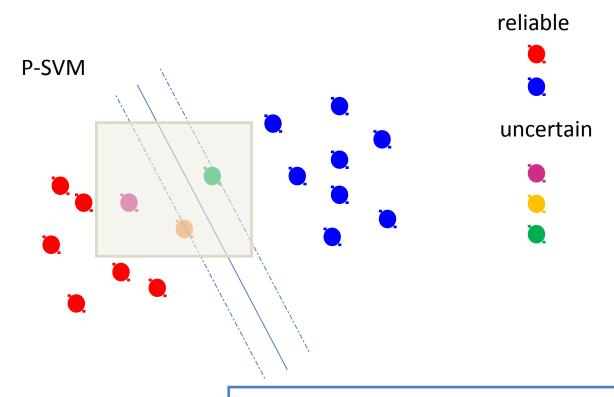
Hyperplane calculated with C-SVM and refine with C-SVR

Context

Existing works

- Methods
- Results

Conclusion



All the gaze labels are uncertain.

How can we identify images with the

MOST RELIABLE labels?

Reliability discrimination

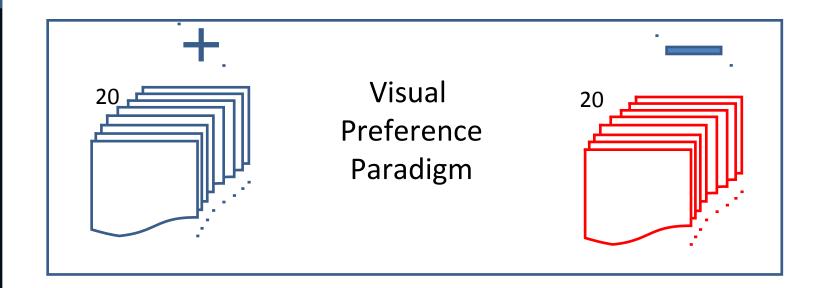
Context

Existing works

- Methods
- Results

Conclusion

- <u>Discriminate the most reliable from the most uncertain (positive class)</u>
 - Most reliable -> class labels (-1,+1)
 - Most uncertain -> probabilistic labels $(p_i=P(y_i=1|x_i))$



Reminder VPP

Context

Existing works

- Methods
- Results

Conclusion

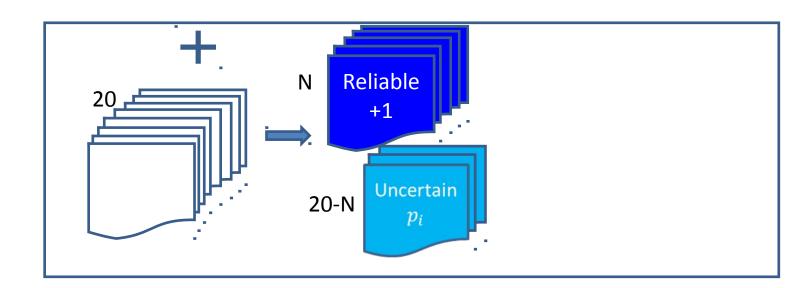
Reliability discrimination

- Discrimination on positive images
 - Majority vote
 - Representativeness of the images relatively to the category [Zhang12]

Existing works

- Methods
- Results

Conclusion



Label discrimination

Context

Existing works

- Methods
- Results

Conclusion

Majority score

 Calculate how many participants have assigned a positive label

Representativeness score

 Calculate 20 scores of representativeness

 Select N positive images with the highest number of positive labels Select the N images with the highest scores

Label discrimination

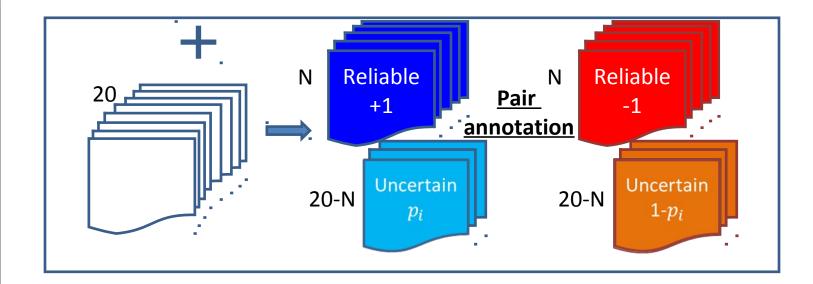
Context

Existing works

- Methods
- Results

Conclusion

- Discrimination on positive images
- Associate the opposite class examples (VPP)



With or without help?

Context

Existing works

- Methods
- Results
- Conclusion

- → Which images have positive labels?
 - No trust in the participant => rely on the committee (committee validation)

All the participants involved so far

More trust in the participant (user-centered)

Context

Existing works

- Methods
- Results

Conclusion

- Baseline C-SVM
- powerSVM
- P-SVM in Committee Validation
- P-SVM in User-Centred
- Food application

Baseline C-SVM (accuracy)

Context

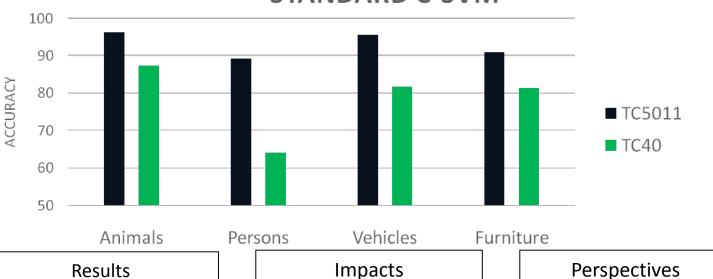
Existing works

- Methods
- Results

Conclusion

→ Is it possible to classify images according to general categories?

→100-time smaller training set and randomly selected examples STANDARD C-SVM



- General categories
- 100-time smaller training set with no optimally chosen images
- Learn general categories
- Learn from smaller training sets is possible

Perspectives

Optimize the selection of images

Baseline C-SVM (accuracy)

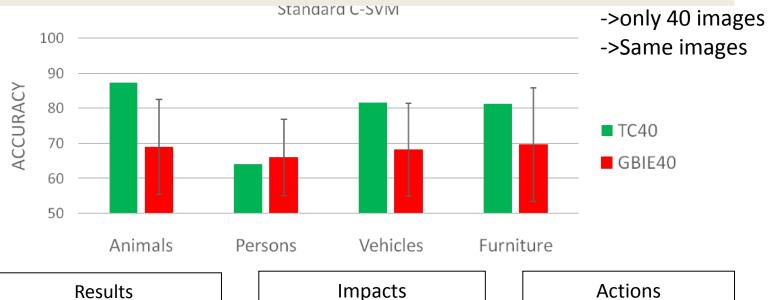
→100-time smaller training set and randomly selected examples

+ GBIE labels

Context

- Methods
- Results

Conclusion



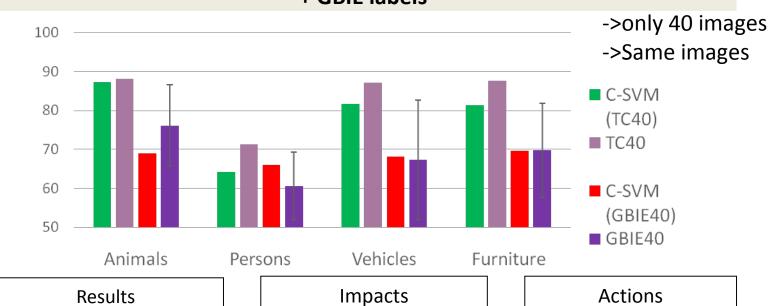
- Noisy labels
 - 10-15% loss

 C-SVM is not robust to label noise Take label uncertainty into account

powerSVM: Robust?

Context →100-time smaller training set and

→100-time smaller training set and randomly selected examples+ GBIE labels



Conclusion

Methods

Results

Existing

works

- Improvement with TC40
- Not satisfactory with GBIE40

- PowerSVM is not robust to label noise
- Find another method to handle label noise -> P-SVM

Committee Validation

Among all the images

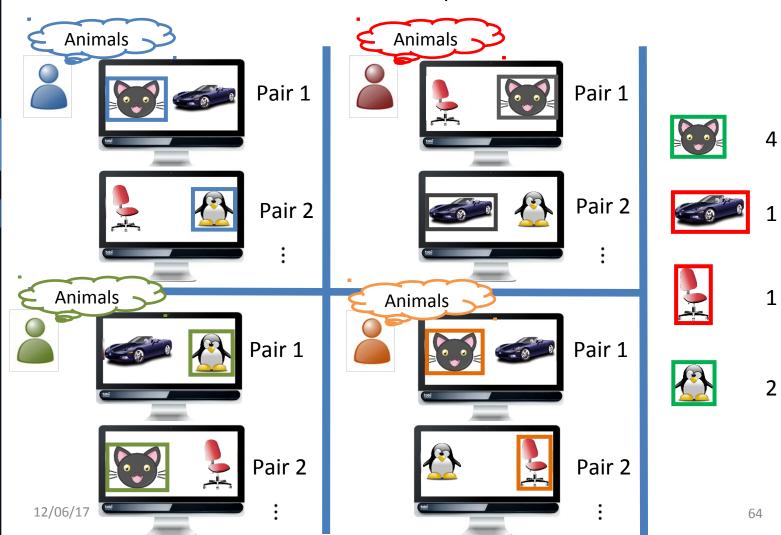
 Select half of them that have the highest number of positive labels

Context

Existing works

- Methods
- Results

Conclusion



Accuracy

Function of the number of reliable labels N

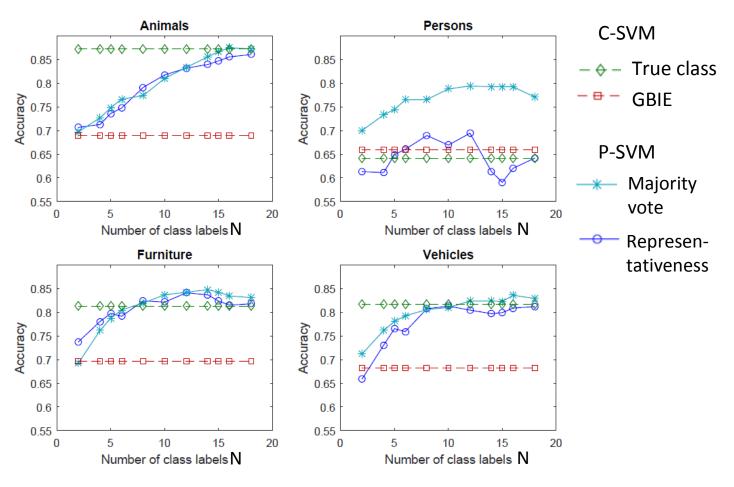
Only 40 images

Context

Existing works

- Methods
- Results

Conclusion



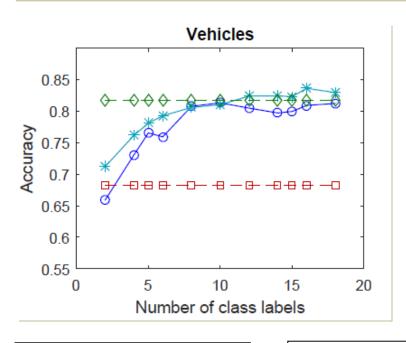
Accuracy

Context

Existing works

- Methods
- Results

Conclusion



C-SVM

– ♦ – True class

- - - GBIE

P-SVM

___ Majority vote

Representativeness

Results

- Both criteria get similar results
- With half of the labels considered as reliable

Impacts

CommitteeValidation context:

GBIE with no finetuning is enough to annotate the training set

Perspectives

 Integration into an interactive search engine

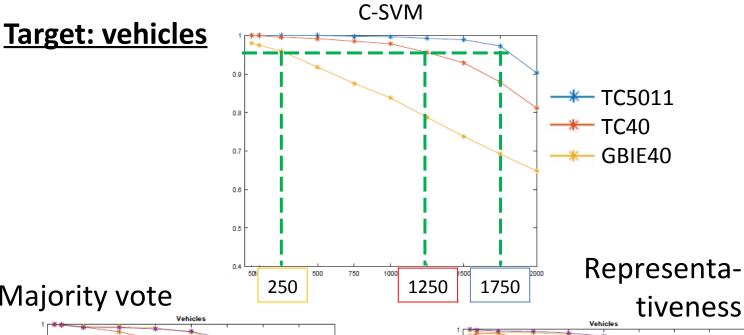
Precision@k

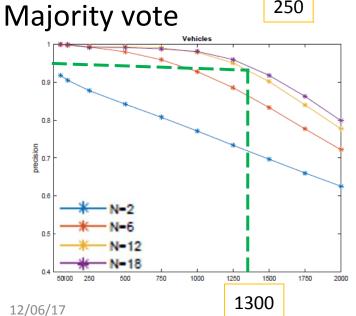
Context

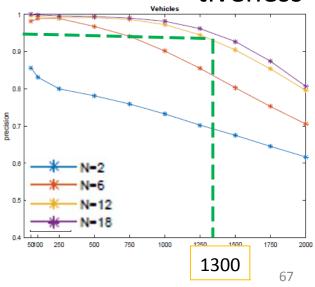
Existing works

- Methods
 - Results

Conclusion







User Centred

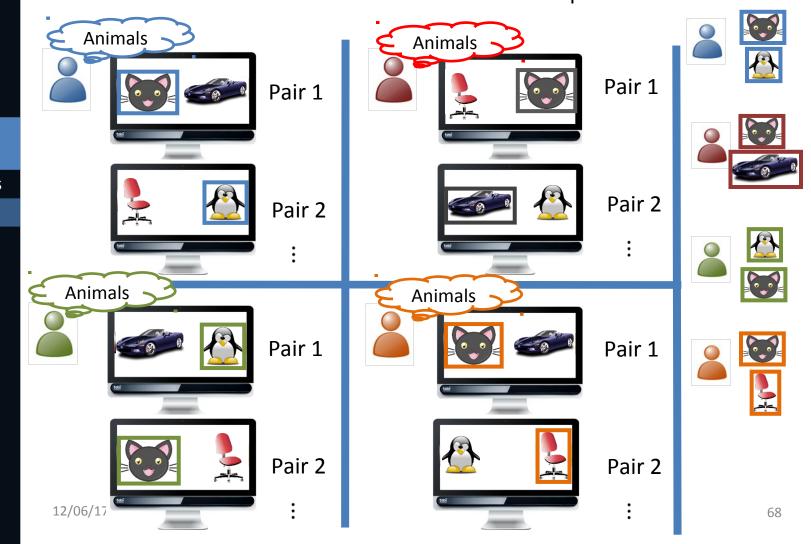
Context

Existing works

- Methods
- Results

Conclusion

- Among all the images
 - Select the images that the participant has annotated as positive



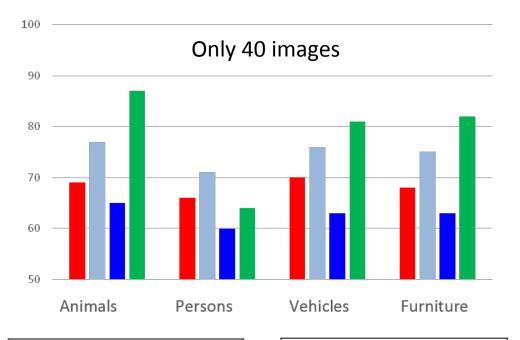
Context

Existing works

- Methods
- Results

Conclusion

Accuracy



C-SVM

GBIE40

TC40

P-SVM

- Majority score

 (half of the participants consider the image as positive)
- Representativeness (score higher than 0.5)

Results

<u>Majority score</u>: improvement

 Representativeness: worse

Impacts

 Full user-centred approach is not possible yet

Perspectives

 Find another criterion of label discrimination without relying on users' vote

Data (food classification)

Context

Existing works

- Methods
- Results

Conclusion

Experiment F1

FOOD 101	Training	Test
Beef carpaccio	671	224
Beet salad	664	222
Cannoli	689	230
Ice cream	694	232
Total	2718	908

Food Classification

Context

Existing works

- Methods
- Results

Conclusion

C-SVM

	Beef carpaccio	Beet salad	Cannoli	Ice Cream
Original	70.0%	77.9%	77.9%	76.2%
TC40	54.6%	62.8%	46.7%	60.0%
GBIE40	51.6%	50.7%	49.3%	54.0%

Results

 Small training sets with true class labels (2): barely reach 60%

Impacts

- Small training sets with noisy labels (30%) (3)
- => Not better than random classification

Actions

Optimize the selection of images

Context

Existing works

- Methods
- Results

Conclusion

Extensions

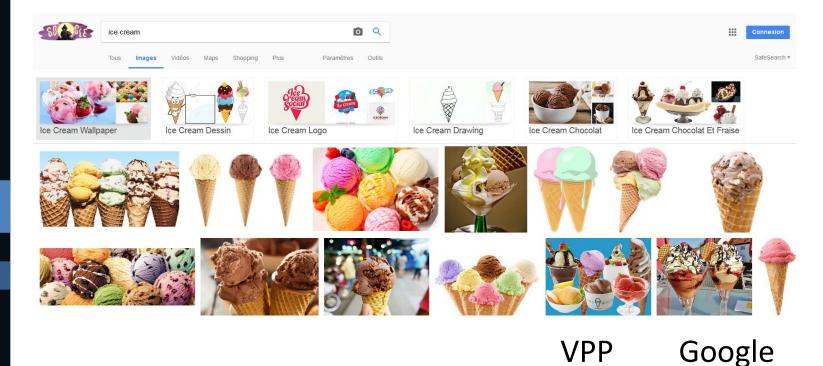
Extensions

Context

Existing works

- Methods
- Results

Conclusion



- What are you looking for 60%
- Get original ideas 60%
- Discover a new concept 76%

Extensions

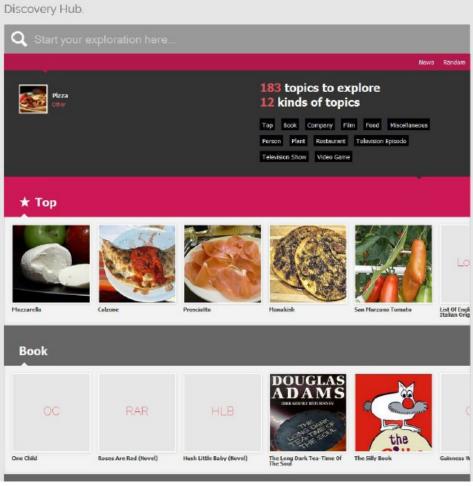
Context

Existing works

- Methods
- Results

Conclusion

Exploratory search



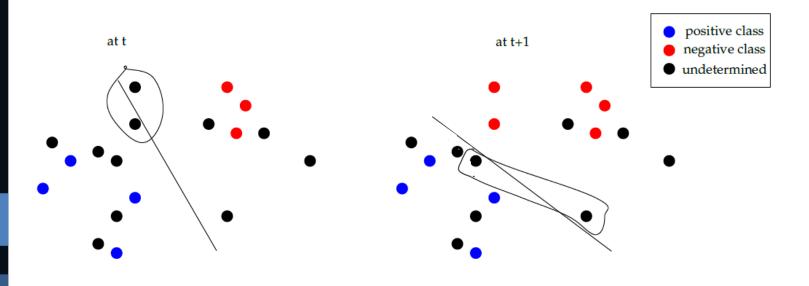
Optimal selection of images

Context

Existing works

- Methods
- Results

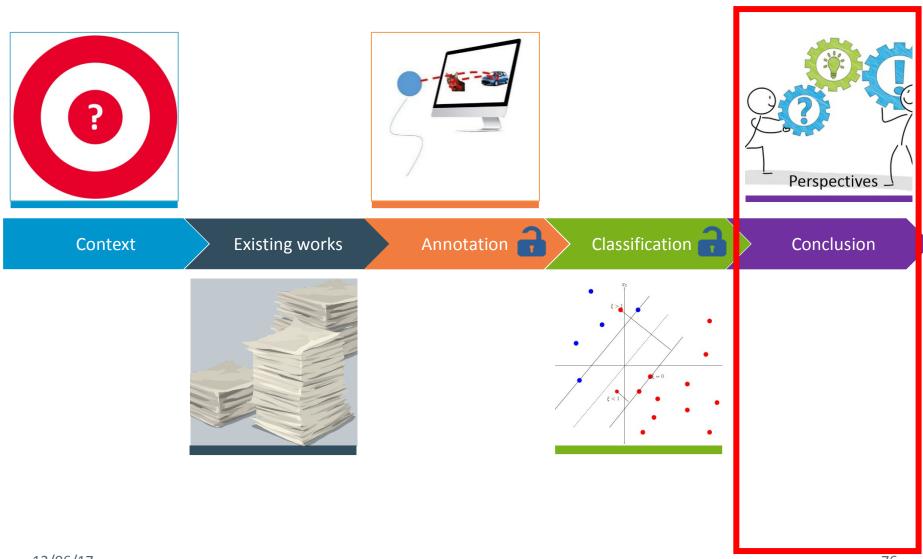
Conclusion



C-SVM accuracy

	Anim	als	ls Persons		Vehicles		Furniture	
TC5011	96.3 %	-	89.3 %	-	95.5 %	-	90.9 %	-
TC40	87.3 %	-	64.1 %	-	81.7 %	-	81.3 %	-
AL40	91.6 %	7%	74.9 %	7.1%	86.6 %	7%	90.5 %	7%

Summary and Future works

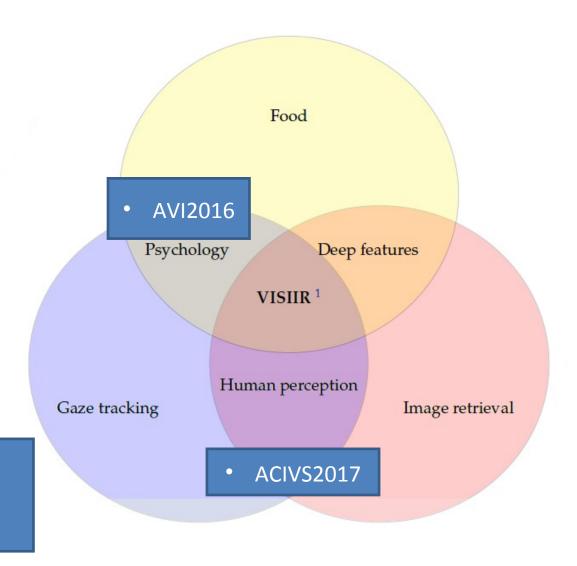


Contributions

Context

Existing works

Conclusion



- ICIP2015
- Publicly available
 gaze data

Summary

Context

Existing works

Conclusion

GBIE annotations

- Limits the burden of manual annotation
- User independent
- Category independent
- Real-time decision

Classification purpose

- powerSVM: representativeness score
- P-SVM: handling uncertain labels
- Committee Validation

Extensions

- User applications in explatory search
- Active learning compliance

Future works

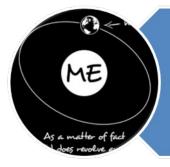
Context

Existing works

Conclusion

GBIE annotations

- Study temporal features
- Robustness to low resolution webcams
- More complex interfaces [Hajimirza12]



User-centred context

 Find a criterion that is related to image features [Tudor16]

Active learning

- Select iteratively the images to display in an interactive learning flavour
- What do you want + What is it? [Wang2017]

Souad Chaabouni

This work is partly funded by French National Agency for Research, VISIIR project, under contract number ANR-13-CORD-0009.

Visual Seek for Interactive Image Retrieval

Context

Existing works

Conclusion

